

> زوجيت در عددهاى صحيح اشاره دارد به اينكه هر عدد صحيح يا فرد است يا زوج.

صورت، عدد n زوج و به شكل n=rk است.
 عددها زوج باشند. اين خواص به صورت زير بيان مىشوند:

$$
\begin{aligned}
& \text { فرد = فرد } \pm \text { زوج } \\
& \text { زوج = فرد } \pm \text { زوج } \\
& \text { زوج = زوج × زوج } \\
& \text { زوج = فرد } \pm \text { فرد } \\
& \text { فرد = فرد × فرد } \\
& \text { زوج = فرد × زوج }
\end{aligned}
$$

مقسومعليهها (شمارندهها)
 (a|b
 عليه نابديهى" مىىناميم. مقسومعليه سَرِه براى n مقسومعليمیى غير از خودِ n است. تعر يف عدد اول: عدد اول آن است كه فقط مقسومعليههاى بديمى دارد. تعداد عددهاى اول نامحدود است. قضئٔ اساسي حساب بيان مىدارد كه هر عدد صحيح مىتواند به حاصل ضرب عددها آن اول اول تجزيه شود.

	لغتها و اصطلاحات مهنم
1. Parity	زوجيت
2 . Integer	صحيح
3.Remainder	باقىمانده.
4.Odd	فرد.
5.Even	زوج
6. divisor	مقسومعليه.
7. Product	ضرب
8. Trivial	بديهىى
9. Prime number	عدد اول
10.Infinite	نامحدود،بىكران،بىنهايت

Parity of Integers

The parity of an integer refers to whether the integer is odd or even. An integer n is odd if there is a remainder of one when it is divided by two, and it is of the from $n=2 k+1$. Otherwise, the number is even and of the from $n=2 k$.
The sum of two numbers is even if both are even or both are odd. The product of two numbers is even if at least one of the numbers is even. These properties are expressed as.

$$
\begin{array}{ll}
\text { even } \pm \text { even }=\text { even } & \text { even } \pm \text { odd } \\
\text { odd } \pm \text { odd }=\text { even } & \text { even } \times \text { even }=\text { even } \\
\text { even } \times \text { odd }=\text { even } & \text { odd } \times \text { odd }=\text { odd }
\end{array}
$$

Divisors

Lat a and b be integers with $a \neq 0$ then a is said to be a divisor of b (denoted by $a \mid b$) if thers exists an integer k such that $b=k a$.
A divisor of n is called a trivial divisor if it is either 1 or n itself; otherwise it is called a nontrivial divisor. A proper divisor of n is a divisor of n other than n itself.

Definition (Prime Numbar)

A prime number is a number whose only divisors are trivial. There are an infinite number of a prime number.
The fundamental theorem of arithmetic states that every integer number can be factored as the product of prime numbers.

تر جمه براى دانشآموزان

2.2 Divisibility, Primes, and Composites

The starting point for the theory of numbers is divisibility.
Definition 2.2.1. If a, b are integers we say that a divides b, or that a is a factor or divisor of b, if there exists an integer q such that $\mathrm{b}=\mathrm{aq}$. We denote this by $\mathrm{a} \mid \mathrm{b}$. Then b is a multiple of a . If $\mathrm{b}>1$ is an integer whose only factors are $\pm 1, \pm \mathrm{b}$ then b is a prime; otherwise, $\mathrm{b}>1$ is composite.

The following properties of divisibility are starightforward consequences of the definition.
Theorem 2.2.1
(1) $\mathrm{a}|\mathrm{b} \Rightarrow \mathrm{a}| \mathrm{bc}$ for any integer c .
(2) $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ implies a|c.
(3) a|b and alc implies that $a(b x+c y)$ for any integer x, y.
(4) $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$ implies that $\mathrm{a}= \pm \mathrm{b}$.
(5) If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a}>0, \mathrm{~b}>0$ then $\mathrm{a}<\mathrm{b}$.
(6) $\mathrm{a} \mid \mathrm{b}$ if and only if ca|cb for any interge $\mathrm{c} \neq 0$.
(7) $\mathrm{a} \mid 0$ for all $\mathrm{a} \in \mathrm{Z}$ and $0 \mid \mathrm{a}$ only for $\mathrm{a}=0$.
(8) $\mathrm{a} \mid \pm 1$ only for $\mathrm{a}= \pm 1$.

